Extremely hot matter and heavy-ion collisions

Boris Tomášik

Fakulta jaderná a fyzikálně inženýrská České vysoké učení tecnické v Praze & Univerzita Mateja Bela v Banskej Bystrici

extremely high pressure extremely high particle density extremely high energy density

Compact (neutron) stars

extremely high pressure extremely high particle density extremely high energy density

Compact (neutron) stars

extremely high pressure extremely high particle density extremely high energy density

Compact (neutron) stars

extremely high pressure extremely high particle density extremely high energy density

Compact (neutron) stars

extremely high temperature extremely high density of (new) particles extremely high energy density

Early Universe

extremely high pressure extremely high particle density extremely high energy density

Compact (neutron) stars

extremely high temperature extremely high density of (new) particles extremely high energy density

> Early Universe Quark-Gluon plasma

Transition to a new phase

Lattice QCD: fast increase of $\varepsilon(T)$ at $T \approx 160$ MeV (2.10¹² K)

- confinement of quarks at low temperature
- deconfinement of quarks and gluons at high temperature
- quark-gluon plasma

ε(T)/T⁴

Phase diagram

Collisions at different energies probe different regions of the phase diagram

$$\frac{\rho_B}{\rho_{\bar{B}}} \propto \exp\left(\frac{2\mu_B}{k_B T}\right)$$

Collisions at different energies probe different regions of the phase diagram

 $\frac{\rho_B}{\rho_{\bar{B}}} \propto \exp\left(\frac{2\mu_B}{k_B T}\right)$

Collisions at different energies probe different regions of the phase diagram

$$\frac{\rho_B}{\rho_{\bar{B}}} \propto \exp\left(\frac{2\mu_B}{k_B T}\right)$$

Collisions at different energies probe different regions of the phase diagram

$$\frac{\rho_B}{\rho_{\bar{B}}} \propto \exp\left(\frac{2\mu_B}{k_B T}\right)$$

Collisions at different energies probe different regions of the phase diagram

$$\frac{\rho_B}{\rho_{\bar{B}}} \propto \exp\left(\frac{2\mu_B}{k_B T}\right)$$

Collisions at different energies probe different regions of the phase diagram

 $\frac{\rho_B}{\rho_{\bar{B}}} \propto \exp\left(\frac{2\mu_B}{k_B T}\right)$

CERN: colliding heavy ions

ATLAS experiment

ALICE experiment

SUISSE FRANC 00

ALICE -

QGP in lab: nuclear collisions

Simlation of Au+Au collision at 200 GeV per nucleon (RHIC accelerator at BNL)

kinetic calculation: transport simulation UrQMD (only hadronic phase) animation: Jeffery Mitchell (Brookhaven National Laboratory)

QGP in lab: nuclear collisions

Simlation of Au+Au collision at 200 GeV per nucleon (RHIC accelerator at BNL)

kinetic calculation: transport simulation UrQMD (only hadronic phase) animation: Jeffery Mitchell (Brookhaven National Laboratory)

Collision energy LHC: 1 144 TeV ≈ 0,2 mJ (a hornet collision)

Collision energy LHC: 1 144 TeV ≈ 0,2 mJ (a hornet collision)

Collision energy LHC: 1 144 TeV ≈ 0,2 mJ (a hornet collision)

Collision energy LHC: 1 144 TeV \approx 0,2 mJ (a hornet collision)

Size: 10⁻¹⁴m Apple Globe system 10⁻¹m 10⁷m 10¹²m

Collision energy LHC: 1 144 TeV ≈ 0,2 mJ (a hornet collision)

Collision energy LHC: 1 144 TeV ≈ 0,2 mJ (a hornet collision)

Collision energy LHC: 1 144 TeV \approx 0,2 mJ (a hornet collision)

Collision energy LHC: 1 144 TeV \approx 0,2 mJ (a hornet collision)

Size: 10⁻¹⁴m

Solar

Collision energy LHC: 1 144 TeV \approx 0,2 mJ (a hornet collision)

Collision energy LHC: 1 144 TeV \approx 0,2 mJ (a hornet collision)

Collision energy LHC: 1 144 TeV \approx 0,2 mJ (a hornet collision)

Collision energy LHC: 1 144 TeV \approx 0,2 mJ (a hornet collision)

• On RHIC and LHC we certainly create the quark-gluon plasma

• On RHIC and LHC we certainly create the quark-gluon plasma

Quark-gluon plasma filled the early Universe just a few microseconds after the Big Bang

• On RHIC and LHC we certainly create the quark-gluon plasma

 Quark-gluon plasma filled the early Universe just a few microseconds after the Big Bang

• We want to measure the properties of QGP (Equation of State, viscosities, ...)

Jet suppression

Jets are produced in simpler collision systems and always in pairs (momentum conservation)

Jets in e⁺e⁻ collision

Jets in Pb+Pb collision at the LHC

ALICE

Run: 244918 Time: 2015-11-25 10:36:18 Colliding system: Pb-Pb Collision energy: 5.02 TeV

Accompanying jet suppressed

Accompanying jet suppressed

A medium is produced which eats up jets.

Accompanying jet suppressed

A medium is produced which eats up jets.

The only medium capable of that is quark-gluon plasma.

Strong jet quenching at the LHC (CMS)

Expansion of hot matter

Expansion influences the distribution of produced particles via Doppler blue shift.

Particles with given momentum are produced only from the corresponding region of homogeneity.

Spectra in transverse momentum

Fit to data from Pb+Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV with the Blast Wave model: locally thermalised fireball and transverse expansion

Data: ALICE Collaboration Fit: I. Melo, B. Tomášik, J. Phys. G. **43** (2016) 015102

Elliptic flow

Observation: in non-central collisions an elliptic anisotropy of hadron distribution

Parametrisation of the distribution of hadrons in azimuthal angle

$$\frac{d^2N}{p_t dp_t d\phi} = \frac{1}{2\pi} \frac{dN}{p_t dp_t} \left(1 + \sum_{n=1}^{\infty} 2v_n(p_t) \cos(n(\phi - \phi_n)) \right)$$

Symmetry constraints for averaging over a large number of events:

- all $\phi_n = 0$
- only even terms are non-vanishing

Hydrodynamic model

Assumption: the fireball consists of compressible fluid, its microscopic structure shows up in the Equation of State and transport coefficients

Higher pressure gradient in the reaction plane:

- \Rightarrow faster expansion in the reaction plane
- \Rightarrow enhanced production in the reaction plane

Energy and momentum conservation

$$\partial_{\mu}T^{\mu} = 0$$

Perfect fluid: $T^{\mu\nu} = (\epsilon + p)u^{\mu}u^{\nu}/c^2 + pg^{\mu\nu}$

Hydrodynamic model

Assumption: the fireball consists of compressible fluid, its microscopic structure shows up in the Equation of State and transport coefficients

Higher pressure gradient in the reaction plane:

- \Rightarrow faster expansion in the reaction plane
- \Rightarrow enhanced production in the reaction plane

Energy and momentum conservation

$$\partial_{\mu}T^{\mu} = 0$$

Perfect fluid: $T^{\mu\nu} = (\epsilon + p)u^{\mu}u^{\nu}/c^2 + pg^{\mu\nu}$

Five unknowns, ϵ , p, \vec{v} , but only four equations!

Hydrodynamic model

Assumption: the fireball consists of compressible fluid, its microscopic structure shows up in the Equation of State and transport coefficients

reaction plane

Higher pressure gradient in the reaction plane:

- \Rightarrow faster expansion in the reaction plane
- \Rightarrow enhanced production in the reaction plane

Energy and momentum conservation

$$\partial_{\mu}T^{\mu} = 0$$

Perfect fluid: $T^{\mu\nu} = (\epsilon + p)u^{\mu}u^{\nu}/c^2 + pg^{\mu\nu}$

Five unknowns, ϵ , p, \vec{v} , but only four equations!

System complemented by the Equation of State (EoS)

$$p = p(\epsilon)$$

By comparing results to data one obtains information on the EoS 18

State of the art hydrodynamics

The hydrodynamic model should:

- include viscosity (shear and bulk)
- start with inhomogeneous initial conditions (different from event to event)
- be 3-dimensional

figure: Björn Schenke

- Simulation must be performed many times in order to provide good statistics for data analysis
- The production of particles is treated with transport model (which takes into account the possibility that hadrons can scatter)

Comparison theory vs. data

Jets + fluid = anisotropies

At the LHC energies, many partons with high p_t fly through QGP. They deposit their momentum and energy into plasma and make it flow.

0.2 0.4 0.6 0.8

P_t[GeV/c]

21

M. Schulc, B. Tomášik: J. Phys. G 40 (2013) 125104, Phys. Rev. C 90 (2014) 064910

y [fm]

Jets + fluid = anisotropies

At the LHC energies, many partons with high p_t fly through QGP. They deposit their momentum and energy into plasma and make it flow.

0.2 0.4 0.6 0.8

P_t[GeV/c]

21

M. Schulc, B. Tomášik: J. Phys. G 40 (2013) 125104, Phys. Rev. C 90 (2014) 064910

y [fm]

Conclusions

We study the properties of quark-gluon plasma:

- its Equation of State at μ_B =0 shows smooth crossover
- its shear viscosity is low somewhere above $1/4\pi$
- It can stop very energetic partons, but the corresponding transport coefficient is still unknown

QGP is created in heavy-ion collisions at the LHC and RHIC

- strong pressure causes very strong transverse expansion in spite of lifetime about 10 fm/c
- inhomogeneities of the initial state show up in the large anisotropies of the observed hadron distributions

Questions:

- Where is the critical point of the phase diagram?
- What are the values of transport coefficients?
- What are the initial conditions of the fireball evolution?

This is very rich field where many different aspects of the observables and underlying theory can be studied.